Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 231(3): e13564, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33002334

RESUMO

AIM: There is an increasing awareness of the impact of age and sex on cardiovascular diseases (CVDs). Differences in physiology are suspected. Beta-adrenoceptors (beta-ARs) are an important drug target in CVD and potential differences might have significant impact on the treatment of many patients. To investigate whether age and sex affects beta-AR function, we analysed a large data set on beta-AR-induced inotropy in human atrial trabeculae. METHODS: We performed multivariable analysis of individual atrial contractility data from trabeculae obtained during heart surgery of patients in sinus rhythm (535 trabeculae from 165 patients). Noradrenaline or adrenaline were used in the presence of the beta2 -selective antagonist (ICI 118 551, 50 nmol/L) or the beta1 -selective antagonist (CGP 20712A, 300 nmol/L) to stimulate beta1 -AR or beta2 -AR respectively. Agonist concentration required to achieve half-maximum inotropic effects (EC50 ) was taken as a measure of beta-AR sensitivity. RESULTS: Impact of clinical variables was modelled using multivariable mixed model regression. As previously reported, chronic treatment with beta-blockers sensitized beta-AR. However, there was no significant interaction between basal force, maximum force and beta-AR sensitivity when age and sex were modelled continuously. In addition, there was no statistically significant effect of body mass index or diabetes on atrial contractility. CONCLUSION: Our large, multivariable analysis shows that neither age nor sex affects beta-AR-mediated inotropy or catecholamine sensitivity in human atrial trabeculae. These findings may have important clinical implications because beta-ARs, as a common drug target in CVD and heart failure, do not behave differently in women and men across age decades.


Assuntos
Contração Miocárdica , Receptores Adrenérgicos beta 2 , Antagonistas Adrenérgicos beta/farmacologia , Feminino , Átrios do Coração , Direitos Humanos , Humanos , Masculino , Norepinefrina
2.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 291-298, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32949251

RESUMO

Atrial fibrillation (AF)-associated remodeling includes contractile dysfunction whose reasons are only partially resolved. Serotonin (5-HT) increases contractile force and causes arrhythmias in atrial trabeculae from patients in sinus rhythm (SR). In persistent atrial fibrillation (peAF), the force responses to 5-HT are blunted and arrhythmic effects are abolished. Since force but not arrhythmic responses to 5-HT in peAF could be restored by PDE3 + PDE4 inhibition, we sought to perform real-time measurements of cAMP to understand whether peAF alters PDE3 + PDE4-mediated compartmentation of 5-HT4 receptor-cAMP responses. Isolated human atrial myocytes from patients in SR, with paroxysmal AF (paAF) or peAF, were adenovirally transduced to express the FRET-based cAMP sensor Epac1-camps. Forty-eight hours later, cAMP responses to 5-HT (100 µM) were measured in the absence or concomitant presence of the PDE3 inhibitor cilostamide (0.3 µM) and the PDE4 inhibitor rolipram (1 µM). We successfully established real-time cAMP imaging in AF myocytes. 5-HT increased cAMP in SR, paAF, and peAF, but in line with previous findings on contractility, this increase was considerably smaller in peAF than in SR or paAF. The maximal cAMP response to forskolin (10 µM) was preserved in all groups. The diminished cAMP response to 5-HT in peAF was recovered by preincubation with cilostamide + rolipram. We uncovered a significantly diminished cAMP response to 5-HT4 receptor stimulation which may explain the blunted 5-HT inotropic responses observed in peAF. Since both cAMP and force responses but not arrhythmic responses were recovered after concomitant inhibition of PDE3 + PDE4, they might be regulated in different subcellular microdomains.


Assuntos
Fibrilação Atrial/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Miócitos Cardíacos/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Naunyn Schmiedebergs Arch Pharmacol ; 391(6): 571-585, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29556684

RESUMO

Myocardial PDE2 activity increases in terminal human heart failure and after isoprenaline infusion in rat heart. PDE2 inhibitors do not potentiate the murine sinoatrial tachycardia produced by noradrenaline. We investigated whether isoprenaline infusion induces PDE2 to decrease the chronotropic and inotropic effects of catecholamines in rat heart. Sprague-Dawley rats were infused with isoprenaline (2.4 mg kg-1 day-1) for 3 days. We used spontaneously beating right atria, paced right ventricular strips and left ventricular papillary muscles. The effects of the PDE2 inhibitors EHNA (10 µM) and Bay 60-7550 (0.1-1 µM) were investigated on the cardiostimulation produced by noradrenaline (ICI118551 50 nM present to block ß2-adrenoceptors) and adrenaline (CGP20712A 300 nM present to block ß1-adrenoceptors). Hydrolysis of cAMP by PDE2 was measured by radioenzyme assay. Bay 60-7550 but not EHNA increased sinoatrial beating. A stable tachycardia elicited by noradrenaline (10 nM) or adrenaline (1 µM) was not increased by the PDE2 inhibitors. Isoprenaline infusion increased the hydrolytic PDE2 activity threefold in left ventricle, reduced the chronotropic and inotropic effects and potency of noradrenaline and abolished the effects of adrenaline. The potency of the catecholamines was not increased by the PDE2 inhibitors. Neither EHNA nor Bay 60-7550 potentiated the effects of the catecholamines. Rat PDE2 decreased basal sinoatrial beating but did not reduce the sinoatrial tachycardia or increases of ventricular force mediated through ß1- and ß2-adrenoceptors. The ß-adrenoceptor desensitization induced by the isoprenaline infusion was not reversed by the PDE2 inhibitors despite the increased hydrolysis of cAMP by PDE2.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/fisiologia , Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Receptores Adrenérgicos beta 1/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Animais , Cardiotônicos/farmacologia , Epinefrina/farmacologia , Coração/fisiologia , Técnicas In Vitro , Masculino , Norepinefrina/farmacologia , Ratos Sprague-Dawley , Taquicardia/induzido quimicamente
5.
Br J Pharmacol ; 174(16): 2706-2715, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28574581

RESUMO

BACKGROUND AND PURPOSE: Mirabegron has been classified as a ß3 -adrenoceptor agonist approved for overactive bladder syndrome. We investigated possible cardiac effects of mirabegron in the absence or presence of ß-adrenoceptor subtype antagonists. In view of its phenylethanolamine structure, we investigated whether mirabegron has indirect sympathomimetic activity by using neuronal uptake blockers. EXPERIMENTAL APPROACH: Right atrial trabeculae, from non-failing hearts, were paced and contractile force measured at 37°C. Single concentrations of mirabegron were added in the absence or presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), ß3 (L-748,337), ß1 (CGP 20712A), ß2 (ICI 118,551) -adrenoceptor antagonists, neuronal uptake inhibitors desipramine or phenoxybenzamine. KEY RESULTS: Mirabegron significantly increased contractile force in human right atrium (1 µM, 7.6 ± 2.6%, n = 7; 10 µM, 10.2 ± 1.5%, n = 22 compared with (-)-isoprenaline P < 0.05). In the presence of IBMX, mirabegron (10 µM) caused a greater contraction. L-748,337 (100 nM) had no effect on the increase in contractile force caused by mirabegron (10 µM). In contrast, mirabegron (10 µM) reduced contractile force in the presence of CGP 20712A, which was not affected by L-748,337 (100 nM) or ICI 118,551 (50 nM). Mirabegron (10 µM) also reduced contractile force in the presence of desipramine or phenoxybenzamine. CONCLUSIONS AND IMPLICATIONS: Mirabegron increases human atrial force through ß1 - but not ß3 -adrenoceptors. Desipramine and phenoxybenzamine block neuronal uptake and conceivably prevent mirabegron from releasing noradrenaline. A non-specific cardiodepressant effect is not mediated through ß3 (or ß2 )-adrenoceptors, consistent with lack of ß3 -adrenoceptor function on human atrial contractility.


Assuntos
Acetanilidas/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Função Atrial/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Tiazóis/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Idoso , Feminino , Humanos , Imidazóis/farmacologia , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Propanolaminas/farmacologia , Receptores Adrenérgicos beta/fisiologia
6.
Br J Pharmacol ; 173(16): 2478-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27238373

RESUMO

BACKGROUND AND PURPOSE: 5-HT increases force and L-type Ca(2) (+) current (ICa,L ) and causes arrhythmias through 5-HT4 receptors in human atrium. In permanent atrial fibrillation (peAF), atrial force responses to 5-HT are blunted, arrhythmias abolished but ICa,L responses only moderately attenuated. We investigated whether, in peAF, this could be due to an increased function of PDE3 and/or PDE4, using the inhibitors cilostamide (300 nM) and rolipram (1 µM) respectively. EXPERIMENTAL APPROACH: Contractile force, arrhythmic contractions and ICa,L were assessed in right atrial trabeculae and myocytes, obtained from patients with sinus rhythm (SR), paroxysmal atrial fibrillation (pAF) and peAF. KEY RESULTS: Maximum force responses to 5-HT were reduced to 15% in peAF, but not in pAF. Cilostamide, but not rolipram, increased both the blunted force responses to 5-HT in peAF and the inotropic potency of 5-HT fourfold to sevenfold in trabeculae of patients with SR, pAF and peAF. Lusitropic responses to 5-HT were not decreased in peAF. Responses of ICa,L to 5-HT did not differ and were unaffected by cilostamide or rolipram in myocytes from patients with SR or peAF. Concurrent cilostamide and rolipram increased 5-HT's propensity to elicit arrhythmias in trabeculae from patients with SR, but not with peAF. CONCLUSIONS AND IMPLICATIONS: PDE3, but not PDE4, reduced inotropic responses to 5-HT in peAF, independently of lusitropy and ICa,L , but PDE3 activity was the same as that in patients with SR and pAF. Atrial remodelling in peAF abolished the facilitation of 5-HT to induce arrhythmias by inhibition of PDE3 plus PDE4.


Assuntos
Arritmias Cardíacas/metabolismo , Fibrilação Atrial/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Serotonina/metabolismo , Idoso , Feminino , Humanos , Masculino , Inibidores de Fosfodiesterase/farmacologia
7.
Naunyn Schmiedebergs Arch Pharmacol ; 389(2): 177-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26531832

RESUMO

Phosphodiesterases PDE2, PDE3, and PDE4 are expressed in murine sinoatrial cells. PDE3 and/or PDE4 reduce heart rate but apparently do not influence the tachycardia mediated through sinoatrial ß1- and ß2-adrenoceptors despite the high content of sinoatrial cAMP. The function of PDE2 is, however, uncertain. Prostaglandin PGE1 elicits sinoatrial tachycardia through EP receptors, but the control by phosphodiesterases is unknown. We investigated on spontaneously beating right atria of mice the effects of the PDE2 inhibitors Bay 60-7550 and EHNA on basal beating and the tachycardia produced by noradrenaline (3 nM) and PGE1 (1 µM). Bay 60-7550 (1 µM), but not EHNA (10 µM), increased basal sinoatrial beating. EHNA also failed to produce tachycardia in the presence of the adenosine deaminase inhibitor 2'-deoxycoformycin (10 µM), remaining inconclusive whether PDE2 reduces basal sinoatrial beating. Rolipram (10 µM) and cilostamide (300 nM) caused moderate tachycardia. The tachycardia evoked by Bay 60-7550 was similar in the absence and presence of rolipram. Noradrenaline elicited stable tachycardia that was not increased by Bay 60-7550. A stable tachycardia caused by PGE1 was not increased by the inhibitors of PDE2, PDE3, and PDE4. Unlike PDE3 and PDE4 which reduce murine basal sinoatrial beating, a possible effect of PDE2 needs further research. The stable tachycardia produced by noradrenaline and PGE1, together with the lack potentiation by the inhibitors of PDE2, PDE3, and PDE4, suggests that cAMP generated at the receptor compartments is hardly hydrolyzed by these phophodiesterases. Evidence from human volunteers is consistent with this proposal.


Assuntos
Alprostadil , Arritmia Sinusal/induzido quimicamente , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Frequência Cardíaca/efeitos dos fármacos , Norepinefrina , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Taquicardia Supraventricular/induzido quimicamente , Animais , Arritmia Sinusal/enzimologia , Arritmia Sinusal/fisiopatologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Modelos Animais de Doenças , Hidrólise , Preparação de Coração Isolado , Masculino , Camundongos , Inibidores da Fosfodiesterase 3/toxicidade , Inibidores da Fosfodiesterase 4/toxicidade , Receptores Adrenérgicos beta 1/metabolismo , Receptores de Prostaglandina E/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Taquicardia Supraventricular/enzimologia , Taquicardia Supraventricular/fisiopatologia , Fatores de Tempo
8.
Neurourol Urodyn ; 34(6): 592-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24820256

RESUMO

AIMS: To investigate the role of the mucosa in (-)-isoprenaline-induced relaxation of mouse detrusor muscle and to characterize the ß-adrenoceptor subtypes involved. METHODS: Isolated intact and mucosa-denuded muscle strips from the urinary bladder of male C57BL6 mice were pre-contracted with KCl (40 mM) and were relaxed with increasing concentrations of the ß-adrenoceptor (ß-AR) agonist (-)-isoprenaline and forskolin in the presence and absence of the subtype-selective ß-AR blockers CGP20712A (ß1 -ARs), ICI118,551 (ß2 -ARs), and L748,337 (ß3 -ARs). RESULTS: Force development in response to KCl was larger in mucosa-denuded than in intact preparations and was almost completely relaxed with increasing concentrations of (-)-isoprenaline. Mucosa-denuded muscles were about 10-fold more sensitive to (-)-isoprenaline than intact muscles. CGP20712A did not affect the concentration-response curves (CRCs) to (-)-isoprenaline, ICI118,551 shifted the CRC further to the right in denuded than in intact strips so that the difference between them was abolished. Combined exposure to ß1 -AR and ß2 -AR blocker yielded the same result. L748,337 did not significantly affect the CRC to (-)-isoprenaline but caused additional blockade to ICI118,551 in the presence of intact mucosa. CONCLUSIONS: The mucosa of mouse detrusor strips impairs KCl-induced force development and reduces the sensitivity to ß-AR-induced relaxation. The relaxing response to (-)-isoprenaline as well as the mucosa effect thereupon are mainly mediated by ß2 -ARs. A minor involvement of ß3 -ARs becomes apparent particularly at high (-)-isoprenaline concentrations.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Isoproterenol/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Aminofenóis , Animais , Colforsina/farmacologia , Relação Dose-Resposta a Droga , Imidazóis/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Sulfonamidas , Vasodilatadores/farmacologia
9.
Proc Natl Acad Sci U S A ; 111(30): 11193-8, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024212

RESUMO

Atrial fibrillation (AF) is the most common heart rhythm disorder. Transient postoperative AF can be elicited by high sympathetic nervous system activity. Catecholamines and serotonin cause arrhythmias in atrial trabeculae from patients with sinus rhythm (SR), but whether these arrhythmias occur in patients with chronic AF is unknown. We compared the incidence of arrhythmic contractions caused by norepinephrine, epinephrine, serotonin, and forskolin in atrial trabeculae from patients with SR and patients with AF. In the patients with AF, arrhythmias were markedly reduced for the agonists and abolished for forskolin, whereas maximum inotropic responses were markedly blunted only for serotonin. Serotonin and forskolin produced spontaneous diastolic Ca(2+) releases in atrial myocytes from the patients with SR that were abolished or reduced in myocytes from the patients with AF. For matching L-type Ca(2+)-current (ICa,L) responses, serotonin required and produced ∼ 100-fold less cAMP/PKA at the Ca(2+) channel domain compared with the catecholamines and forskolin. Norepinephrine-evoked ICa,L responses were decreased by inhibition of Ca(2+)/calmodulin-dependent kinase II (CaMKII) in myocytes from patients with SR, but not in those from patients with AF. Agonist-evoked phosphorylation by CaMKII at phospholamban (Thr-17), but not of ryanodine2 (Ser-2814), was reduced in trabeculae from patients with AF. The decreased CaMKII activity may contribute to the blunting of agonist-evoked arrhythmias in the atrial myocardium of patients with AF.


Assuntos
Fibrilação Atrial/metabolismo , Catecolaminas/farmacologia , Contração Miocárdica/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Serotonina/farmacologia , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotônicos/farmacologia , Doença Crônica , Colforsina/farmacologia , AMP Cíclico/metabolismo , Feminino , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Rianodina/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 387(7): 629-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24668024

RESUMO

The ß-blockers carvedilol and metoprolol provide important therapeutic strategies for heart failure treatment. Therapy with metoprolol facilitates the control by phosphodiesterase PDE3, but not PDE4, of inotropic effects of catecholamines in human failing ventricle. However, it is not known whether carvedilol has the same effect. We investigated whether the PDE3-selective inhibitor cilostamide (0.3 µM) or PDE4-selective inhibitor rolipram (1 µM) modified the positive inotropic and lusitropic effects of catecholamines in ventricular myocardium of heart failure patients treated with carvedilol. Right ventricular trabeculae from explanted hearts of nine carvedilol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through ß1-adrenoceptors (ß2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through ß2-adrenoceptors (ß1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of the PDE inhibitors. The inotropic potency, estimated from -logEC50s, was unchanged for (-)-noradrenaline but decreased 16-fold for (-)-adrenaline in carvedilol-treated compared to non-ß-blocker-treated patients, consistent with the previously reported ß2-adrenoceptor-selectivity of carvedilol. Cilostamide caused 2- to 3-fold and 10- to 35-fold potentiations of the inotropic and lusitropic effects of (-)-noradrenaline and (-)-adrenaline, respectively, in trabeculae from carvedilol-treated patients. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline. Treatment of heart failure patients with carvedilol induces PDE3 to selectively control the positive inotropic and lusitropic effects mediated through ventricular ß2-adrenoceptors compared to ß1-adrenoceptors. The ß2-adrenoceptor-selectivity of carvedilol may provide protection against ß2-adrenoceptor-mediated ventricular overstimulation in PDE3 inhibitor-treated patients. PDE4 does not control ß1- and ß2-adrenoceptor-mediated inotropic and lusitropic effects in carvedilol-treated patients.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Insuficiência Cardíaca/fisiopatologia , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 1/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Adulto , Carvedilol , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Epinefrina/farmacologia , Feminino , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Norepinefrina/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Quinolonas/farmacologia , Rolipram/farmacologia
11.
BJU Int ; 112(8): 1215-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23937341

RESUMO

OBJECTIVES: To elucidate the impact of the mucosa on detrusor muscle function by investigating force of contraction under various stimulatory conditions and during subsequent relaxation using catecholamines. PATIENTS AND METHODS: Detrusor tissue was obtained from patients who had undergone cystectomy for bladder cancer and strips of intact or mucosa-denuded muscle were set up for force measurement. Preparations were precontracted with KCl, carbachol or electric-field stimulation (EFS). Precontracted strips were relaxed using increasing concentrations of catecholamines in the absence and presence of the subtype-selective ß-adrenoceptor (AR) blockers CGP 20712A (ß1-ARs), ICI 118,551 (ß2-ARs), and L-748,337 (ß3-ARs). RESULTS: Force development in response to KCl (40 mM), carbachol (1 µM) or EFS was larger in the absence of mucosa than in intact muscle strips. The force of contraction of mucosa-denuded strips with detached urothelium incubated in the same chamber was as low as in intact strips. Noradrenaline relaxed precontracted detrusor strips to a significantly larger extent and at lower concentrations in denuded than in intact strips. CGP 20712A did not affect noradrenaline-induced relaxation of denuded and intact strips, and ICI 118,551 did not influence noradrenaline-induced relaxation in denuded strips, but abolished the difference between denuded and intact strips. The antagonism of the relaxant effects of noradrenaline by L-748,337 was slightly smaller in intact than denuded strips. CONCLUSIONS: The mucosa of human detrusor strips impairs force development when stimulated with KCl, carbachol or EFS. The mucosa also blunts the relaxing effects of catecholamines. The latter effect does not involve the activation of ß1-ARs but only of ß2-ARs, whereas ß3-ARs mediate the relaxation of human detrusor.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Catecolaminas/farmacologia , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Norepinefrina/farmacologia , Receptores Adrenérgicos beta/metabolismo , Bexiga Urinária/fisiopatologia , Idoso , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Bexiga Urinária/efeitos dos fármacos , Urotélio/efeitos dos fármacos , Urotélio/fisiopatologia
12.
Br J Pharmacol ; 170(2): 352-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23750586

RESUMO

BACKGROUND AND PURPOSE: The ß1-adrenoceptor has at least two binding sites, high and low affinity sites (ß1H and ß1L, respectively), which mediate cardiostimulation. While ß1H-adrenoceptor can be blocked by all clinically used ß-blockers, ß1L-adrenoceptor is relatively resistant to blockade. Thus, chronic ß1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of ß1H-adrenoceptors. Hence, it is important to determine the potential significance of ß1L-adrenoceptors in vivo, particularly in pathological situations. EXPERIMENTAL APPROACH: C57Bl/6 male mice were used. Chronic (4 or 8 weeks) ß1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg(-1)·day(-1)). Cardiac function was assessed by echocardiography and micromanometry. KEY RESULTS: (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4-8 or 4-12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. CONCLUSIONS AND IMPLICATIONS: ß1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained ß1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 1/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Antagonistas Adrenérgicos beta/administração & dosagem , Animais , Sítios de Ligação , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propanolaminas/administração & dosagem , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Índice de Gravidade de Doença , Fatores de Tempo , Remodelação Ventricular/efeitos dos fármacos
13.
Br J Pharmacol ; 169(3): 528-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23489141

RESUMO

BACKGROUND AND PURPOSE: PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1 µM) or PDE4 inhibitor rolipram (1-10 µM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. EXPERIMENTAL APPROACH: Right and left ventricular trabeculae from freshly explanted hearts of 5 non-ß-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through ß1 adrenoceptors (ß2 adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through ß2 adrenoceptors (ß1 adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from -logEC50s. KEY RESULTS: Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-ß-blocker-treated patients. Cilostamide caused greater potentiation (P = 0.037) of the positive inotropic effects of (-)-adrenaline (0.78 ± 0.12 log units) than (-)-noradrenaline (0.47 ± 0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. CONCLUSIONS AND IMPLICATIONS: Metoprolol induces a control by PDE3 of ventricular effects mediated through both ß1 and ß2 adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through ß2 adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/efeitos adversos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/efeitos dos fármacos , Metoprolol/efeitos adversos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas alfa-Adrenérgicos/química , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacologia , Antiarrítmicos/efeitos adversos , Antiarrítmicos/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Epinefrina/agonistas , Epinefrina/farmacologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/cirurgia , Transplante de Coração , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Técnicas In Vitro , Metoprolol/uso terapêutico , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Norepinefrina/agonistas , Norepinefrina/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/química
15.
Trends Pharmacol Sci ; 32(7): 377-83, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21481950

RESUMO

Cyclic AMP (cAMP) steers the generation of basal heart beat in the sinoatrial node. It also induces sinoatrial tachycardia and increased cardiac force, elicited through activation of Gs-protein-coupled receptors (GsPCRs). Phosphodiesterases (PDEs) hydrolyse cAMP. In the heart mainly PDE3 and PDE4 would be expected to limit those functions, and the PDE isoenzymes do indeed reduce basal sinoatrial beating rate and blunt the positive inotropic effects of agonists, mediated by GsPCRs. By contrast, recent evidence shows that GsPCR-mediated sinoatrial tachycardia is not controlled by PDE1-5. A PDE-resistant cAMP pool in sinoatrial cells, generated through activation of GsPCRs, including ß(1)- and ß(2)-adrenoceptors, appears to guarantee unrestrained tachycardia during fight or flight stress.


Assuntos
Diester Fosfórico Hidrolases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiopatologia , Taquicardia/metabolismo , Taquicardia/fisiopatologia , Animais , Frequência Cardíaca/fisiologia , Humanos , Receptores Acoplados a Proteínas G/agonistas , Taquicardia/enzimologia
16.
J Mol Model ; 17(10): 2525-38, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21203789

RESUMO

The affinity of the classical ß(2) adrenoceptor-selective inverse agonist ICI118,551 is notoriously lower for porcine ß(2) adrenoceptors (p(2)ßAR) than for human ß(2) adrenoceptors (hß(2)AR) but molecular mechanisms for this difference are still unclear. Homology 3-D models of pß(2)AR can be useful in predicting similarities and differences, which might in turn increase the comparative understanding of ligand interactions with the hß(2)AR. In this work, the pß(2)AR amino acid sequence was used to carry out homology modeling. The selected pß(2)AR 3-D structure was structurally and energetically optimized and used as a model for further theoretical study. The homology model of pß(2)AR has a 3-D structure very similar to the crystal structures of recently studied hß(2)AR. This was also corroborated by sequence identity, RMSD, Ramachandran map, TM-score and docking results. Upon performing molecular docking simulations with the AutoDock4.0.1 program on pß(2)AR, it was found that a set of well-known ß(2)AR ligands reach two distinct binding sites on pß(2)AR. Whereas one of these sites is similar to that reported on the hß(2)AR crystal structure, the other can explain some important experimental observations. Additionally, the theoretical affinity estimated for ICI118,551 closely agrees with affinities estimated from experimental in vitro data. The experimental differences between the human/porcine ß(2)ARs in relation to ligand affinity can in part be elucidated by observations in this molecular modeling study.


Assuntos
Simulação de Dinâmica Molecular , Receptores Adrenérgicos beta 2/química , Animais , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Suínos/metabolismo
17.
Br J Pharmacol ; 162(4): 823-39, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20726983

RESUMO

BACKGROUND AND PURPOSE: It has been proposed that BRL37344, SR58611 and CGP12177 activate ß3-adrenoceptors in human atrium to increase contractility and L-type Ca(2+) current (I(Ca-L)). ß3-adrenoceptor agonists are potentially beneficial for the treatment of a variety of diseases but concomitant cardiostimulation would be potentially harmful. It has also been proposed that (-)-CGP12177 activates the low affinity binding site of the ß1-adrenoceptor in human atrium. We therefore used BRL37344, SR58611 and (-)-CGP12177 with selective ß-adrenoceptor subtype antagonists to clarify cardiostimulant ß-adrenoceptor subtypes in human atrium. EXPERIMENTAL APPROACH: Human right atrium was obtained from patients without heart failure undergoing coronary artery bypass or valve surgery. Cardiomyocytes were prepared to test BRL37344, SR58611 and CGP12177 effects on I(Ca-L). Contractile effects were determined on right atrial trabeculae. KEY RESULTS: BRL37344 increased force which was antagonized by blockade of ß1- and ß2-adrenoceptors but not by blockade of ß3-adrenoceptors with ß3-adrenoceptor-selective L-748,337 (1 µM). The ß3-adrenoceptor agonist SR58611 (1 nM-10 µM) did not affect atrial force. BRL37344 and SR58611 did not increase I(Ca-L) at 37°C, but did at 24°C which was prevented by L-748,337. (-)-CGP12177 increased force and I(Ca-L) at both 24°C and 37°C which was prevented by (-)-bupranolol (1-10 µM), but not L-748,337. CONCLUSIONS AND IMPLICATIONS: We conclude that the inotropic responses to BRL37344 are mediated through ß1- and ß2-adrenoceptors. The inotropic and I(Ca-L) responses to (-)-CGP12177 are mediated through the low affinity site ß(1L)-adrenoceptor of the ß1-adrenoceptor. ß3-adrenoceptor-mediated increases in I(Ca-L) are restricted to low temperatures. Human atrial ß3-adrenoceptors do not change contractility and I(Ca-L) at physiological temperature.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Idoso , Apêndice Atrial/citologia , Sinalização do Cálcio/efeitos dos fármacos , Etanolaminas/antagonistas & inibidores , Etanolaminas/farmacologia , Feminino , Humanos , Técnicas In Vitro , Cinética , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Propanolaminas/antagonistas & inibidores , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 3/metabolismo , Temperatura , Tetra-Hidronaftalenos/antagonistas & inibidores , Tetra-Hidronaftalenos/farmacologia
18.
Eur J Pharmacol ; 638(1-3): 99-107, 2010 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-20406625

RESUMO

The structures of porcine and human beta(2)-adrenoceptors differ but the repercussions for porcine cardiac function are unknown. We investigated the function of porcine beta(2)-adrenoceptors in 3 cardiac regions, sinoatrial node, left atrium and right ventricle of newborn piglets. Both (-)-noradrenaline and (-)-adrenaline caused sinoatrial tachycardia: 60+/-10% and 62+/-7% of the maximum response (E(max)) to (-)-noradrenaline (-logEC(50)=9.0) and (-)-adrenaline (-logEC(50)=7.5) respectively, were resistant to antagonism by the beta(1)-selective CGP20712A (2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy]propyl]amino]ethoxy]-benzamide) (300 nM) but antagonized by beta(2)-selective ICI118551 (erythro(+/-)-[1-(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol) (50 nM), consistent with mediation through beta(2)-adrenoceptors. The phosphodiesterase3-selective inhibitor cilostamide and phosphodiesterase4-selective inhibitor rolipram did not affect catecholamine chronotropic potencies. Only small CGP20712A-resistant positive inotropic effects of (-)-adrenaline were detected in the left atria (13+/-2% of E(max)) and ventricular trabeculae (14+/-5% of E(max)). The atrial inotropic responses to (-)-noradrenaline and (-)-adrenaline faded; fades were prevented by rolipram but not cilostamide or concurrent cilostamide+rolipram respectively. (-)-Noradrenaline (ICI118551 present) increased left atrial cAMP levels through beta(1)-adrenoceptors that were markedly enhanced by rolipram but unaffected by cilostamide. Concurrent cilostamide+rolipram uncovered inotropic and cAMP responses to (-)-adrenaline (CGP20712A present). We conclude that sinoatrial beta(2)-adrenoceptors are more important than beta(1)-adrenoceptors in the mediation of tachycardia caused by both (-)-noradrenaline and (-)-adrenaline in the newborn piglet. beta(2)-adrenoceptors have only a minor role in the mediation of left atrial and ventricular inotropic effects of (-)-adrenaline. Catecholamine-evoked tachycardia is not controlled by PDE3 or PDE4. PDE4, but not PDE3, controls the atrial inotropic and cAMP beta(1)-adrenoceptor-mediated responses to (-)-noradrenaline. Both PDE3 and PDE4 blunt left atrial inotropic and cAMP responses to (-)-adrenaline through beta(2)-adrenoceptors.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Receptores Adrenérgicos beta 1/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Taquicardia/fisiopatologia , Agonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , Epinefrina/farmacologia , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Técnicas In Vitro , Norepinefrina/farmacologia , Inibidores da Fosfodiesterase 3 , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Rolipram/farmacologia , Nó Sinoatrial/efeitos dos fármacos , Suínos , Taquicardia/induzido quimicamente
19.
Naunyn Schmiedebergs Arch Pharmacol ; 380(5): 421-30, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19693491

RESUMO

The mammalian heart expresses at least five phosphodiesterases (PDE1-5). Catecholamines produce surges of inotropically relevant cAMP through beta(1)-adrenoceptor stimulation. cAMP is mainly hydrolysed by PDE3 and/or PDE4 thereby blunting contractility. Basal sinoatrial beating rate in mouse, rat, piglet and rabbit sinoatrial cells is reduced by PDE3 and/or PDE4 through hydrolysis of cAMP. However, in rodents, the tachycardia elicited by catecholamines through production of cAMP by beta-adrenoceptor activation is not controlled by PDE3 and PDE4, despite a blunting effect of PDE3 or/and PDE4 on basal sinoatrial beating, but it is unknown whether PDE3 limits catecholamine-evoked tachycardia in the rabbit. Since rabbit sinoatrial cells are an important model for pacemaker research, we investigated whether the positive chronotropic effects of (-)-noradrenaline on spontaneously beating right atria of the rabbit are potentiated by inhibition of PDE3 with cilostamide (300 nM). We also studied the sinoatrial effects of the PDE4 inhibitor rolipram (10 microM) and its influence on the responses to (-)-noradrenaline. For comparison, we investigated the influence of cilostamide and rolipram on the positive inotropic responses to (-)-noradrenaline on rabbit left atria and right ventricular papillary muscles. Cilostamide and concurrent cilostamide + rolipram, but not rolipram alone, increased sinoatrial rate by 15% and 31% of the effect of (-)-isoprenaline (200 microM) but the PDE inhibitors did not significantly change the chronotropic potency of (-)-noradrenaline. In contrast in papillary muscle, the positive inotropic effects of (-)-noradrenaline were potentiated 2.4-, 2.6- and 44-fold by cilostamide, rolipram and concurrent cilostamide + rolipram, respectively. In left atrium, the positive inotropic effects of (-)-noradrenaline were marginally potentiated by cilostamide, as well as potentiated 2.7- and 32-fold by rolipram and by concurrent cilostamide and rolipram respectively. To compare the influence of PDE1-5 on basal sinoatrial rate and (-)-noradrenaline-evoked tachycardia, we investigated on rat right atria the effects of selective inhibitors. The PDE4 inhibitor rolipram and non-selective inhibitor isobutyl-methylxanthine caused tachycardia with -logEC(50)s of 7.2 and 5.0 and E(max) of 18% and 102% of (-)-isoprenaline, respectively. Rolipram did not change the chronotropic potency of (-)-noradrenaline. At high concentrations (10-30 microM), the PDE1, PDE3 and PDE5 inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine, cilostamide and sildenafil, respectively, caused marginal tachycardia but did not significantly change the chronotropic potency of (-)-noradrenaline. The PDE2-selective inhibitor erythro-9-[2-hydroxy-3-nonyl]adenine caused marginal bradycardia at 30 microM and tended to reduce the chronotropic potency of (-)-noradrenaline. Rabbit PDE3 reduces basal sinoatrial rate. Although PDE4 only marginally reduces rate, under conditions of PDE3 inhibition, it further reduces sinoatrial rate. Both PDE3 and PDE4 control atrial and ventricular positive inotropic effects of (-)-noradrenaline. In contrast, neither PDE3 nor PDE4 limit the sinoatrial tachycardia induced by (-)-noradrenaline. In the rat, only PDE4, but not PDE1, PDE2, PDE3 and PDE5, reduces basal sinoatrial rate. None of the five rat PDEs limits the (-)-noradrenaline-evoked tachycardia. Taken together, these results confirm and expand evidence for our proposal that the cAMP-compartment modulating basal sinoatrial rate, controlled by PDE3 and/or PDE4, is different from the PDE-resistant cAMP compartment involved in beta(1)-adrenoceptor-mediated sinoatrial tachycardia.


Assuntos
AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Taquicardia/fisiopatologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Nó Sinoatrial/fisiopatologia
20.
Br J Pharmacol ; 156(1): 62-83, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19133992

RESUMO

BACKGROUND AND PURPOSE: beta(1)- and beta(2)-adrenoceptors coexist in rat heart but beta(2)-adrenoceptor-mediated inotropic effects are hardly detectable, possibly due to phosphodiesterase (PDE) activity. We investigated the influence of the PDE3 inhibitor cilostamide (300 nmol x L(-1)) and the PDE4 inhibitor rolipram (1 micromol x L(-1)) on the effects of (-)-catecholamines. EXPERIMENTAL APPROACH: Cardiostimulation evoked by (-)-noradrenaline (ICI118551 present) and (-)-adrenaline (CGP20712A present) through beta(1)- and beta(2)-adrenoceptors, respectively, was compared on sinoatrial beating rate, left atrial and ventricular contractile force in isolated tissues from Wistar rats. L-type Ca(2+)-current (I(Ca-L)) was assessed with whole-cell patch clamp. KEY RESULTS: Rolipram caused sinoatrial tachycardia. Cilostamide and rolipram did not enhance chronotropic potencies of (-)-noradrenaline and (-)-adrenaline. Rolipram but not cilostamide potentiated atrial and ventricular inotropic effects of (-)-noradrenaline. Cilostamide potentiated the ventricular effects of (-)-adrenaline but not of (-)-noradrenaline. Concurrent cilostamide + rolipram uncovered left atrial effects of (-)-adrenaline. Both rolipram and cilostamide augmented the (-)-noradrenaline (1 micromol x L(-1)) evoked increase in I(Ca-L). (-)-Adrenaline (10 micromol x L(-1)) increased I(Ca-L) only in the presence of cilostamide but not rolipram. CONCLUSIONS AND IMPLICATIONS: PDE4 blunts the beta(1)-adrenoceptor-mediated inotropic effects. PDE4 reduces basal sinoatrial rate in a compartment distinct from compartments controlled by beta(1)- and beta(2)-adrenoceptors. PDE3 and PDE4 jointly prevent left atrial beta(2)-adrenoceptor-mediated inotropy. Both PDE3 and PDE4 reduce I(Ca-L) responses through beta(1)-adrenoceptors but the PDE3 component is unrelated to inotropy. PDE3 blunts both ventricular inotropic and I(Ca-L) responses through beta(2)-adrenoceptors.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Inibidores da Fosfodiesterase 3 , Inibidores da Fosfodiesterase 4 , Receptores Adrenérgicos beta 1/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Animais , Função Atrial/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Relação Dose-Resposta a Droga , Epinefrina/farmacologia , Técnicas In Vitro , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Quinolonas/farmacologia , Ratos , Ratos Wistar , Rolipram/farmacologia , Função Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...